You have questions? We got answers!

Science & Mathematics by Anonymous 2018-06-01 11:02:32
Social Science
How do you simplify this problem?
6 answers
5sin^3(3x)+[(5sin3x) (cos^2(3x)]
-
Anonymous
5sin^3(3x)+5sin(3x)cos^2(3x) = 5sin(3x)[sin^2(3x)+cos^2(3x)] = 5sin(3x)*1 = 5sin(3x)
-
Anonymous
5sin^3(3x) +[5sin(3x)*cos^2(3x)] = 5sin(3x)[sin^2(3x) + cos^2(3x)] = 5sin(3x).
-
Anonymous
= 5.sin³(3x) + [5.sin(3x) * cos²(3x)] = [5.sin(3x) * sin²(3x)] + [5.sin(3x) * cos²(3x)] = 5.sin(3x) * [sin²(3x) + cos²(3x)] → recall the famous formula: cos²(a) + sin²(a) = 1 = 5.sin(3x) * [1] = 5.sin(3x)
-
Anonymous
5sin^3(3x)+[(5sin3x) (cos^2(3x)]=5sin(3x)[sin^2(3x) +cos^2(3x)] = 5sin(3x)
-
Anonymous
5sin^3(3x)+[(5sin3x) (cos^2(3x)] => 5sin^3(3x)+[(5sin3x) (1 - Sin^2(3x)] => 5sin^3(3x)+[(5sin3x - 5Sin^3(3x) => NB '5Sin^3(3x) add out to 'zero' Hence 5Sin(2x) ]
-
Anonymous
5sin^3(3x)+[(5sin3x) (cos^2(3x)]= =5sin^3(3x)+[(5sin3x) (1-sin^2(3x)]= =5sin^3(3x)-5sin^3(3x)+5sin(3x)= =5sin(3x)