You have questions? We got answers!

Science & Mathematics by Anonymous 2018-06-25 03:31:42
Social Science
Find the derivative of h(x)= sin(2x) cos(2x).?
3 answers
Find the derivative of h(x)=sin(2x) cos(2x). Please list steps.
-
Anonymous
h(x)=sin(2x)cos(2x) => h(x)=sin(4x)/2 => h '(x)=(1/2){d[sin(4x)]/dx}d(4x)/dx => h '(x)=(1/2)cos(4x)(4) => h '(x)=2cos(4x)
-
Anonymous
h (x) = f (x) g (x) h ` (x) = f `(x) g(x) + g`(x) f (x) h ` (x) = 2 cos (2x) cos (2x) - 2 sin (2x) sin (2x) h ` (x) = 2 [ cos²(2x) - sin²(2x) ] g ` (x) = 2 cos 4x
-
Anonymous
h = (1/2)sin(4x) dh/dx = 2cos(4x) That was the more compact solution but these identities will give equivalent forms. cos(4x) = cos^2(2x) - sin^2(2x) cos(4x) = 2cos^2(2x) - 1 cos(4x) = 1 - 2sin^2(2x)